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The key to an accurate method of protein structure predic-
tion is the development of an effective discriminatory func-
tion. Knowledge-based discriminatory functions extract
parameters from statistical analysis of experimentally
determined protein structures. We assess how the quality
of the protein structures used for compiling statistics affects
the performance of a residue-specific all-atom probability
discriminatory function (RAPDF). We find that the dis-
criminatory power correlates with the quality of the struc-
tural dataset on which the RAPDF is parameterized in a
statistically significant manner. The overrepresentation of
unfavorable contacts in the low-resolution and NMR struc-
tures contributes to the major errors in the compilation of
the conditional probabilities. Such errors weaken the dis-
criminatory power of the function, especially when decoy
conformations also contain considerable numbers of unfa-
vorable contacts. This indicates that using high-resolution
structural datasets after filtering out unfavorable contacts
can improve the performance of knowledge-based discrimi-
natory functions.
Keywords: all-atom probability discriminatory function/
experimental resolution/decoy discrimination

Introduction

A large number of protein structure prediction methods,
including those based on comparative modeling, fold
recognition and de novo simulations, rely on an effective
knowledge-based discriminatory function (Jernigan and
Bahar, 1996; Moult, 1997; Lazaridis and Karplus, 2000).
Knowledge-based discriminatory functions extract statistics
from a database of experimentally determined protein struc-
tures. Often the distribution of pairwise distances is used
to extract ‘pseudo-potentials’ between atomic interactions
based on the inverse formulation of the Boltzmann equation.
Alternatively, a knowledge-based discriminatory function
may be viewed as a set of probability distributions that can
be used to find the most native-like structure (Sippl, 1990,
1995). Basic physical principles, however, are often violated
in both these formalisms (Godzik et al., 1995; Godzk, 1996;
Thomas and Dill, 1996; Ben-Naim, 1997; Park et al., 1997).
For example, the original derivation of the Boltzmann distri-
bution is based on a thermodynamic equilibrium system,
whereas a database of protein structures is an inhomogeneous
collection of different systems, each with its own free energy
minimum (Godzik et al., 1995; Jernigan and Bahar, 1996;

Ben-Naim, 1997). This theoretical defect, together with other
problems in the theoretical justification of the knowledge-
based discriminatory function (Godzik et al., 1995; Godzk,
1996; Thomas and Dill, 1996; Ben-Naim, 1997; Park et al.,
1997), causes uncertainties when selecting experimental
structures for a database to compile the knowledge-based
discriminatory function.

The properties of a structural database affect the statistical
outcome derived from it. The database dependence of the
knowledge-based discriminatory functions has been reported
previously by Furuichi and Koehl (1998). Their study showed
that knowledge-based discriminatory functions carry a mem-
ory of the quality of the database in terms of the amount
and diversity of secondary structure it contains. For example,
the distance-dependent discriminatory function extracted by
the method of Sippl from an all-a protein structural database
is quantitatively different from that extracted from an all-b
protein structural database. In a recent study, Zhang et al.
(2004) compared the database dependence on structure topol-
ogy between three different knowledge-based approaches.
They have suggested that a possible source for database depen-
dence is the flawed reference state used in the knowledge-
based approaches.

Databases of protein structures are growing in size.
Knowledge-based discriminatory functions derived from them
should, therefore, also increase in accuracy. However, because
the theoretical basis of knowledge-based discriminatory func-
tion is not clear (Godzik et al., 1995; Godzk, 1996; Thomas
and Dill, 1996; Ben-Naim, 1997; Park et al., 1997), a definitive
‘rule of thumb’ for selecting experimentally determined struc-
tures for a database has never been proposed. Corresponding to
this issue, there is now an enormous difference in accuracy
between the best and the worst experimentally determined
protein structures owing to the limitations of methodologies
and experimental errors (Cruickshank, 1999).

It has been considered that X-ray diffraction has a relatively
high degree of inherent reliability. However, there are many
minor inaccuracies or problems of interpretation that can affect
reliability of the final coordinates (Laskowski et al., 1998). For
example, if the data is poor and the quality of the electron
density map is low, it can be difficult to trace a molecule
using the electron density computed from the diffraction
data. In Nuclear Magnetic Resonance (NMR) spectroscopy,
insufficient experimentally derived restraints often result in
the uncertainty of the atomic coordinates (Chalaoux et al.,
1999). In addition, the problem of valid error estimation
has not yet been solved, mainly because it is difficult to esti-
mate the likelihood of occasional large mistakes in assigning
starting coordinates that might not be correctable by refine-
ment. Therefore, not all structures deposited in the Protein
Data Bank (PDB) are of equally high quality, usually because
of the quality of the experimental data from which they were
determined. Software tools for validating protein structures
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have been developed, which can detect some errors in the
assessed structures. For example, the PROSA II program
by Sippl can identify misfolded structures as well as faulty
segments of structural models by calculating energy distri-
butions of residues with statistical potentials of mean force
(Sippl, 1993). Other tools include PROCHECK (EU 3-D
Validation Network, 1998) and ERRAT (Colovos and
Yeates, 1993).

We previously developed a residue-specific all-atom
conditional probability discriminatory function (RAPDF)
(Samudrala and Moult, 1998) that includes all protein heavy
atoms and residue-specific atom types, rather than using a
reduced set of atom types. The effectiveness of RAPDF
has been demonstrated in a number of studies, including the
selection of conformations in comparative modeling and
evaluation of decoys in de novo simulations (Samudrala
et al., 1999a, b). In this study, we investigate whether the
quality of structures used for compilation will affect the
performance of knowledge-based discriminatory functions
with respect to discriminating near-native conformations
from non-native ones. We accomplish this by comparing the
effectiveness of RAPDFs derived from structural datasets
with different experimental resolutions. For each RAPDF,
we evaluate its ability to recognize and rank near-native con-
formations through a comprehensive ‘decoy discrimination’
test (Samudrala and Levitt, 2000; Tsai et al., 2003; Wang
et al., 2004). We thus arrive at practical rules for selecting
experimental structures for the compilation of conditional
probabilities. In addition, we examine the conditional proba-
bilities derived from the low-resolution and NMR datasets
that lead to inaccurate discrimination. We further discuss
the relationship between the quality of structures, the distance
cutoff of interatomic contacts used for compilation and the
efficacy of the knowledge-based discriminatory functions.

Methods

RAPDF
A complete description of RAPDF can be found in the original
paper (Samudrala and Moult, 1998). In summary, we make
observations of interatomic distances on a dataset of experi-
mentally determined structures. The conditional probabilities
are compiled by counting frequencies of distances between
pairs of atom types in a dataset of protein structures. All non-
hydrogen atoms are considered, and a residue-specific descrip-
tion of the atoms was used, that is, the Ca of an alanine is
different from the Ca of a glycine. This results in a total of
167 atom types. The interatomic distances observed are
divided into 1.0 s bins ranging from 3.0 to 20.0 Å. Contacts
between atom types in the 0–3 Å range are placed in a separate
bin, resulting in a total of 18 distance bins. Distances within
a single residue are not included in the counts.

The scores S(dab) proportional to the negative log condi-
tional probability of observing a native conformation given
an interatomic distance are compiled according to the
formula:

SðdabÞ ¼ � ln
Pðdab j CÞ
PðdabÞ

/ � lnPðdab j CÞ:

Here P(dab j C) is the probability of observing a distance d
between two atom types a and b in a correct conformation,

and P (dab) is the probability of observing such a distance,
dab, in any conformation, correct or incorrect. For a dataset of
experimental structures, the counts of observations of dab in
each structure are summed to generate an overall probability.
We compiled tables of scores S(dab) for all possible pairs of
the 167 atom types for the 18 distance ranges from a database
of known structures.

Given an amino acid sequence in a particular conformation,
the scores of all contacts between pairs of atom type that
fall within the distance cutoff is summed to yield the total
RAPDF score to evaluate the probability of a conformation
being native-like.

Conformation files used for compilation of
conditional probabilities
To build structural datasets for the compilation of conditional
probabilities, a non-homologous subset was taken from the
ASTRAL 1.69 database (Chandonia et al., 2004). A represen-
tative subset may be selected according to the similarity mea-
sure based on the E-value (Murzin et al., 1995; Chandonia
et al., 2004). Specifically, a non-homologous subset containing
5439 structures was initially obtained from the ASTRAL 1.69
database according to the similarity measure with a threshold
of 10�4 on the E-value. Conformations with incomplete side
chains and theoretical models were excluded.

The non-homologous X-ray diffraction structures were
divided into three datasets according to their resolution. The
boundaries were chosen to ensure that the number of structures
and the number of residues in each dataset were similar. The
resolution ranges of the three X-ray diffraction datasets are:
dataset 1, 0.54–1.79 Å (1486 structures); dataset 2, 1.80–2.10 Å
(1532 structures); and dataset 3, 2.11–3.90 Å (1518 structures).
A total of 616 structures solved by NMR spectroscopy were
used as dataset 4. These four structural datasets were used for
obtaining the conditional probabilities, resulting in four
RAPDFs.

Decoy sets
Publicly available decoy sets provide a means to evaluate the
performance of discriminatory functions. A total of eight
multiple decoy sets generated by different simulation methods
were used to test the performance of the RAPDFs. They
include decoy conformations for 181 proteins: rosetta set
containing decoy conformations for 41 proteins, 4 state_
reduced for 7 proteins, fisa_casp3 for 6, hg_structal
for 29, ig_structal for 61, ig_structal_hires for
20, lmds for 11 and semfold for 6 proteins. The rosetta

set were obtained from http://www.bakerlab.org (Samudrala
and Levitt, 2000). All other decoy sets were obtained from the
Decoys ‘R’ Us database <http://dd.compbio.washington.edu>
(Tsai et al., 2003).

Evaluation of the discriminatory power of the RAPDFS
There are two ways to evaluate the discriminatory power of a
discriminatory function on decoy sets (Samudrala and Levitt,
2000; Tsai et al., 2003; Wang et al., 2004). The first approach
is to measure the likelihood of selecting the native structure
from a set of decoys. Within any decoy set, an effective
discriminatory function should be able to distinguish the native
structure from non-native ones with a high degree of accuracy.
However, the native structure can rarely be reproduced exactly.
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The ability of picking the best-predicted or the near-native
decoys is more important in protein structure prediction.
Therefore, our preferred method is to assess how well a par-
ticular discriminatory function can distinguish near-native
conformations from non-native ones in a particular decoy
ensemble (Samudrala and Levitt, 2000; Tsai et al., 2003;
Wang et al., 2004). An effective discriminatory function
should show a consistent preference for the former.

Given a set of decoy conformations, we first plot the RAPDF
score against the root mean square deviations of the Ca

atoms (cRMSD) between the native conformation and each
decoy conformation. The cRMSD is not a measure of the
resolution of a decoy conformation but reflects its structural
similarity to the native. Suppose the best-scoring conformation
has the cRMSD rank of R in an ensemble of N decoy con-
formations, the log probability of selecting the best-scoring
conformation (log PB1) is calculated as log PB1 = log(R/N).
This is the major criteria for evaluating the decoy discrimina-
tion of a function.

Other evaluation measures include: (i) The log probability
of selecting the lowest cRMSD conformation among the
top 10 best-scoring conformations (log PB10), which is
calculated as log PB0 = log (Ri/N), where Ri is the cRMSD
rank of the decoy conformation, which has the lowest cRMSD
among the 10 best-scoring decoy conformations. (ii) The frac-
tion enrichment (FE) of the 10% lowest cRMSD conforma-
tions in the top 10% best-scoring conformations. (iii)
Correlation coefficient (CC) between RAPDF scores and
cRMSDs within a set of decoy conformations.

The discriminatory power of each of the four RAPDFs
parameterized on different datasets was evaluated by log PB1

on the decoy conformations for 181 proteins from the eight
multiple decoy sets. For comparison purposes, the value for
each protein in the same decoy set was summed, resulting in a
sum of log PB1 for the decoy set. To perform an evaluation on
all the eight decoy sets, the overall sum of log PB1 on the eight
decoy sets was calculated. The overall evaluation of the sum
of, the average CC and the average FE were calculated in
the same manner.

Determining the source of errors in the compilation of
conditional probabilities
For each structural dataset, a table containing the scores
S(dab) for all pairs between the 167 atom types in the 18
distance bins was compiled (Samudrala and Moult, 1998). We
compared the four sets of scores compiled from structural
datasets with different experimental resolutions. Variances
between the four equivalent scores were calculated and plotted
against the corresponding atom types and the distance bin
indexes. Representative residue-specific interatomic contacts
contributing to the significant differences between the four sets
of scores were analyzed. The residue-specific atom type is
named using the following convention: one letter abbreviation
of the residue followed by one or more letters representing
the atom type. For example, VCG1 represents the Cg1 atom in
valine.

To explain how errors in the conditional probabilities of
RAPDF weaken decoy discriminations, we compared decoy
conformations to the native one in the decoy set 4state_

reduced/1ctf. Images of corresponding conformations
were prepared using Molscript (Kraulis, 1991) and Raster3D
(Merritt and Bacon, 1997).

Results and discussion

The discriminatory power of RAPDF correlates with the
quality of the structural dataset used for the compilation of
conditional probabilities
Our goal is to assess the relationship between the experimental
quality of the dataset and the discriminatory power of RAPDF.
Four experimental datasets were derived from the ASTRAL
database containing protein structures with different qualities.
Datasets 1 to 3 were derived from X-ray diffraction structures
indexed from the highest resolution to the lowest resolution
and dataset 4 contains only structures solved using NMR. The
performances of the four RAPDFs derived from these four
datasets were evaluated by the log PB1, log PB10, FE and
CC evaluation measures. Each evaluation measure quantifies
the efficacy of RAPDFs at discriminating the eight decoy sets
generated by different simulation methods.

Figure 1 shows the overall evaluation of RAPDFs on all
decoy sets. The log PB1 estimates the likelihood of selecting a
conformation of a particular cRMSD with the best score. The
smaller the value, the greater the likelihood of assigning the
best score to the structure with the lowest cRMSD. The overall
evaluation by log PB1 suggests that the performance of RAPDF
correlates with the quality of the dataset from which the
RAPDF is derived. When the scores of the near-native decoy
conformations are very close to each other, the evaluation by
log PB10 is more effective. The overall sum of log PB10 indi-
cates lower discrimination when the quality of the dataset is
lower. An ideal discriminatory function has scores that are
perfectly correlated with cRMSDs, allowing straightforward
detection of the best-predicted conformations. The higher the
CC, the better the discriminatory function at selecting near-
native conformations. The overall average of CC increases
consistently when using RAPDFs derived from the structural
datasets of higher resolution. The FE captures the extent to

Fig. 1. Relationship between the experimental quality of the dataset and the
discriminatory power of RAPDF as evaluated by the overall log PB1, log PB10,
fraction enrichment (FE) and correlation coefficient (CC) for the 181 proteins
from the eight decoy sets. The overall evaluations by the four measures
suggest that the discriminatory power of RAPDF is enhanced as the resolution
of X-ray diffraction dataset is improved. The lowest discriminatory power of
RAPDF parameterized on the NMR dataset.
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which the lowest cRMSD conformations are enriched by the
subset of the best-scoring conformations. The overall FE
evaluation indicates that RAPDF derived from the structural
datasets of higher resolution has improved power of enriching
the best-predicted conformations.

The non-parametric Wilcoxon Signed-Rank test was
employed to estimate the statistical significance of the differ-
ence between the performances of RAPDFs derived from dif-
ferent datasets. For every two datasets, we hypothesize that
the RAPDF compiled from the lower-quality dataset performs
the same or better than the RAPDF compiled from the
higher-quality dataset. For the evaluation by log PB1, the
P-value calculated using the Wilcoxon test between dataset
1 and that of dataset 2 is 0.0195, that between dataset 2 and
dataset 3 is 0.0039 and that between dataset 3 and dataset 4
is 0.0039, well beyond the baseline significance of 0.05.
Similar results were obtained using log PB1, FE, and CC evalu-
ation measures, indicating that the differences between the
higher-resolution RAPDFs and the lower-resolution ones are
statistically significant (P-values < 0.05).

In summary, the effectiveness of RAPDF correlates with the
resolution of the three X-ray diffraction structural datasets
from which the RAPDF is compiled in a statistically significant
manner. The RAPDF derived from the NMR dataset shows the
lowest discriminatory power. Regardless of the evaluation
methods used, the discriminatory power of the knowledge-
based function is improved by using a high-resolution dataset
of experimentally determined structures.

The errors in conditional probabilities originate from the
high frequencies of unfavorable contacts in low-resolution
structures
The conditional probabilities derived from the four structural
datasets were compared to determine the reason for the dif-
ferent discrimination occurrences of the RAPDFs. For each
structural dataset, a table is compiled containing the scores
S(dab) for all pairs between the 167 atom types in the 18
distance bins (ranging from 0 to 20 Å). Variances between
the four equivalent scores for each pair were calculated and
plotted against the corresponding atom types and the distance
bin indexes. The largest variances were observed in the dis-
tance bins 1 for which the distance range is 0–3 Å (Figure 2).
This indicates that the probabilities for atom pairs at close
distances may contribute most to the errors in the conditional
probabilities for RAPDF.

We further examined the specific contacts that may cause
errors in the conditional probabilities compiled from the
low-resolution and NMR datasets (datasets 3 and 4). All the
167 · 167 residue-specific interatomic contacts observed in
the 18 distance bins were sorted by the difference between
the score S(dab) compiled from the high-resolution X-ray
diffraction structures (dataset 1) and the equivalent score
compiled from the NMR structures (dataset 4). All inter-
atomic contacts with the top 100 largest differences were
found in distance bins 1 (0–3 Å), which is consistent with
the observations in Figure 2. The scores of these contacts
show a consistently decreasing trend along the dataset
indices. This indicates a higher frequency of such contacts
occurring in structural datasets with a lower average resolu-
tion, which is consistent with the fact that lower-resolution
structures contain more inaccurate interatomic contacts
(Kraulis, 1991; Murzin et al., 1995). In this study, these

contacts, typically observed in the distance bins, are referred
to as ‘unfavorable contacts’.

The scores of 10 representative unfavorable contacts
observed in the distance bin 1 (0–3 Å) are shown in Figure 4.
They are VO-LO, VO-LCG, KO-VO, AO-LCB, TO-WCG,
ACB-MO, ACB-RO, AO-DO, AO-VCG1 and VO-VCG2.
Most of these interatomic pairs consist of one backbone
oxygen with a steric clash to another atom, resulting in bad
contacts in X-ray diffraction structures (Laskowski et al.,
1998). However, given a high-resolution electron density
map, these contacts could be removed during refinement.
That is, unfavorable contacts are less frequent in high-
resolution structures. In agreement with this, the scores for
these unfavorable contacts compiled from the low-resolution
dataset are lower than those from the high-resolution dataset,
indicating that these contacts occur more frequently in the
low-resolution structures (Figure 3).

Overall, the high frequencies of unfavorable contacts in
protein structures reflect that the accuracy of the correspond-
ing atom coordinates is not reliable. Overrepresentation of
unfavorable contacts consequently results in errors in the
conditional probabilities.

Unfavorable contacts in decoy conformations diminish the
effectiveness of RAPDFs compiled from low-resolution or
NMR structures
To explain how the overrepresentation of the unfavorable
contacts in the low-resolution and NMR datasets results in the
lower discrimination, decoy conformations in a specific decoy
set were scrutinized. We asked the question: if a decoy also
contains considerable numbers of unfavorable contacts, can an
RAPDF compiled from any of the four structural datasets
distinguish it effectively?

First, two decoy conformations from the decoy set
4state_reduced/1ctf were compared with the native
conformation 1ctf (Figure 4A). The cRMSD of the two
decoy conformations 1ctf.d9493 and 1ctf.g4353 are
0.8 and 5.3 Å, respectively. The RAPDF scores are compared

Fig. 2. Variance between four sets of log odds scores [S(dab)] derived from
four different datasets. Variances between the four equivalent S(dab) for each
interatomic contact observed in each distance bin are calculated and plotted
against the 167 residue-specific atom types and the 18 distance bins. The
two horizontal axes represent the 167 residue-specific atom types and the 18
distance bins, respectively. The vertical axis indicates the variance between
equivalent scores compiled from four different datasets. The largest variances
between the four sets of scores are observed in distance bins 1(0–3 Å).
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in Figure 4B. The lower the RAPDF score, the higher the
probability of a decoy conformation being native-like. Using
RAPDFs compiled from high-resolution datasets (dataset 1 and
2), these two decoys could be discriminated correctly. The
RAPDF score of 1ctf.g4353 reaches a level closer to
that of the near-native conformation along the increasing da-
taset index. The RAPDF derived from the NMR dataset (da-
taset 4) could not discriminate these two decoys: the decoy
1ctf.g4353 with higher cRMSD has a better RAPDF score
(�35.50) than the near-native decoy 1ctf.d9493 (�31.51)
(Figure 4B).

To explain such a phenomenon, the distances of the inter-
atomic contacts containing backbone oxygen in the native and
the decoy conformations were then inspected. The distances of
four such contacts, 34LO-35VO, 16VO-58LCG, 13KO-14VO
and 41AO-42LCB, are shown in Figure 4C. These contacts
in 1ctf.g4353, however, are observed in the distance bin
1 (0–3 Å) and represent unfavorable contacts. In contrast,
equivalent contacts of the near-native decoy 1ctf.d9493

are observed within the acceptable distance range of 3–7 Å.
For each decoy conformation, the RAPDF score is obtained

by summing up the scores of all the individual interatomic
contacts that fall within a certain distance cutoff. As shown in
Figure 3, scores of unfavorable contacts compiled from the
low-resolution and the NMR structural datasets are lower
because these contacts are overrepresented in those datasets.
The contributions of these contacts to the final score of a decoy
conformation are, therefore, enhanced, resulting in a more
negative RAPDF score, thereby diminishing the effectiveness
of the discriminatory function.

Practical rules for selecting experimentally determined
structures for derivation of knowledge-based discriminatory
functions
Our study points out the limitations of using protein structures
uncritically for derivation of knowledge-based discriminatory
functions. The discriminatory power of RAPDF is reduced as
the resolution of the X-ray diffraction structural datasets

decreases. The lower discriminatory power is caused by the
overrepresentation of the unfavorable contacts.

To make use of experimentally determined structures for
compiling knowledge-based discriminatory functions, we
suggest two practical rules: First, the experimental resolution
is a good measure of the quality of a structural dataset for
extracting conditional probabilities. Second, eliminating
unfavorable contacts reduces noise in the compilation of the
conditional probabilities.

Most unfavorable contacts are observed as close carbon
atom contacts within 0–3 Å (Figure 2). Ideally, if all unfavor-
able contacts could be distinguished from the close contacts

Interatomic 

contacts

Native

structure

1ctf.d9493

cRMSD: 0.8 Å    

1ctf.g4353

cRMSD: 5.3 Å

34LO-35VO 3.43 3.64 2.66

16VO-58LCG 6.06 5.39 2.98

13KO-14VO 3.23 3.53 2.87

41AO-42LCB 4.13 4.24 2.93

A

B

C

Fig. 4. Analysis of specific decoys and contacts in the 4state_reduced/

1ctf set. (A) All conformations are colored from the N terminus (blue) to
the C terminus (red). Four interatomic contacts are represented as ball-and-
sticks, with the connection between the two paired atoms colored in cyan. The
pattern of these contacts in the near-native decoy (1ctf.d9493) is similar
to that observed in the native structure. The decoy conformation with high
cRMSD (1ctf.g4353) has a significantly different distance pattern for
these atoms. (B) RAPDF scores of 1ctf.d9493 and 1ctf.g4353

calculated using RAPDF derived from the four datasets are compared. The
RAPDF score of 1ctf.g4353 reaches to a level closer to that of
1ctf.d9493 along the increasing dataset index. Using RAPDFs compiled
from high-resolution datasets (dataset 1 and 2), these two decoys could be
discriminated correctly. The RAPDF derived from NMR dataset (dataset 4)
cannot discriminate between the near-native (1ctf.d9493) and non-native
(1ctf.g4353) decoy. (C) Distances (Å) of four interatomic contacts
containing backbone oxygens. Three of these contacts in the near-native
decoy (1ctf.d9493) are observed in the same distance bin with equivalent
contacts in the native conformation whereas those in the non-native decoy
(1ctf.g4353) are not, resulting in different contributions to the final
RAPDF scores for their respective decoy conformations. These contacts in
1ctf.g4353 are observed in distance bin 1 (0–3 Å) and thus represent
unfavorable contacts.

Fig. 3. The scores S(dab) of 10 representative unfavorable contacts observed in
distance bin 1 (0–3 Å). For each of these contacts, the four scores consistently
decrease as the dataset index increases, indicating that higher frequencies
of these contacts occur in the lower-resolution and NMR datasets. All these
unfavorable contacts contain a clashing backbone oxygen atom.
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then the efficacy of the function could be improved.
Figure 5 shows that the influence of the dataset quality is
diminished when all the contacts within 3 Å are excluded
for RAPDF compilation. However, for RAPDFs derived
from high-resolution structures (dataset 1 and dataset 2), the
discriminatory power decreases. This result suggests that some
close contacts that are not unfavorable contacts are also crucial
to the efficacy of the discriminatory function. Interestingly, the
RAPDFs derived from the low-resolution structures (dataset 3)
and NMR structures (dataset 2) show an improved discrim-
ination, indicating that in low resolution or NMR structures
the effect of unfavorable contacts dominates compared with
other close contacts. These observations suggest specialized
RAPDFs that are specifically designed to work well for decoy
discrimination by eliminating consideration of atom pairs that
lead to poor discrimination.

Our results also suggest that the RAPDF derived from the
NMR structural dataset is not as powerful as those derived
from the high-resolution X-ray diffraction structural datasets.
An early study by Godzik et al. (1995) has suggested large
differences between the parameters derived from X-ray
diffraction structures and structures obtained by the NMR
method. The origin of this difference is not yet understood.
In addition, it is not possible to differentiate between reliable
and unreliable NMR structures from the information given
in the PDB conformation files. Thus, rules for using NMR
structures to derive knowledge-based discriminatory functions
are not yet available.

We used the thermal factor (called B-factor) as a gauge of
the quality of structural datasets. B-factor is inversely propor-
tional to the relative accuracy of a given atom and represents
the thermal motions about the equilibrium structure (Bott
and Frane, 1990). Any segment with large B-factors indicates
more disorder in that region, which is less ‘visible’ by X-ray
diffraction (Bott and Frane, 1990). To evaluate the effect of
disordered regions in a protein conformation, atoms for which
the B-factors were 2 SD greater than the average were filtered
out to reconstruct our structural datasets. Evaluation on the
189 standard decoys shows similar results to those obtained
from the original structural datasets, suggesting that excluding
atoms with high B-factors does not affect the knowledge-based
discriminatory functions.

In addition, we investigated two other functions developed
previously, the residue-specific virtual-atom probability

discriminatory function (RVPDF) and the non-residue-
specific virtual-atom probability discriminatory function
(NVPDF) [Samudrala and Moult, 1998]. These functions are
also affected by the quality of the experimental datasets in a
similar fashion to RAPDF (data not shown). However, the
discriminatory power of RVPDF or NVPDF is lower than
that of RAPDF across the different datasets.

The advantage of using a larger distance cutoff for
distance-dependent knowledge-based discriminatory
functions
Unfavorable contacts in an X-ray diffraction structure usually
result from the incorrect interpretation of a poor electron den-
sity map. These contacts are the major origins of the errors
compiled in the conditional probabilities. Most unfavorable
contacts are observed as close contacts within 3 Å. For each
set of RAPDFs compiled from different datasets, we compared
their discriminatory power at distance cutoffs of 5, 10, 15
and 20 Å (Figure 6). Generally, discrimination progressively
improves at a larger distance cutoff up to 15 Å. The RAPDFs
derived from high-resolution X-ray diffraction structures
(dataset 1) show similar discrimination at cutoffs of 10, 15
and 20 Å. The lowest discrimination is always observed in
the RAPDFs with a distance cutoff of 5 Å, regardless of the
dataset that the RAPDF is parameterized on. This suggests that
including long-distance contacts compensates for the errors
caused by unfavorable contacts. It also indicates that includ-
ing long-distance interactions is necessary even while using
high-resolution structures for compiling the RAPDF.

Conclusions

The discriminatory power of an RAPDF correlates with the
quality of the structural dataset from which the RAPDF
is derived. High-resolution structures for compilation of
conditional probabilities improve the discriminatory power
of RAPDF. In low-quality structures, overrepresentation of
unfavorable contacts results in the errors in the conditional

Fig. 6. Performance of RAPDF at different distance cutoffs as evaluated
by log PB1 over eight different decoy sets. Generally, discrimination
progressively improves with larger distance cutoffs, up to 15 Å. The lowest
discrimination is always observed in the RAPDFs with a distance cutoff of
5 Å, regardless of the dataset that the RAPDF is parameterized on. The
RAPDFs derived from high-resolution X-ray diffraction structures (dataset 1)
achieve similar discrimination at cutoffs of 10 Å, 15 Å and 20 Å.

Fig. 5. Comparison of the influence of dataset quality on RAPDFs with
distance cutoffs of 0–20 Å and 3–20 Å. The performance of RAPDF is
evaluated by S(dab) over eight different decoy sets. The influence of the
dataset quality is diminished when close contacts within 3Å are filtered
out. For RAPDFs derived from high-resolution structures (dataset 1 and
dataset 2), the discriminatory power decreases. The RAPDFs derived from
the low-resolution structures (dataset 3) and NMR structures (dataset 2) show
improved discrimination.

436436

T.Liu and R.Samudrala



probabilities. Such errors weaken the discriminatory power of
the RAPDFs, especially when decoy conformations also con-
tain considerable numbers of unfavorable contacts. It suggests
that improving the current knowledge-based discriminatory
functions is possible if the low-quality structures in an experi-
mental dataset are filtered out.

The database dependence of a knowledge-based discrimi-
natory function is difficult to avoid because of its theoretical
defects. We, therefore, propose two practical rules to construct
structural datasets for derivation of effective knowledge-based
discriminatory functions. First, the experimental resolution is
a good measure of the likely quality of a structural dataset.
Second, eliminating unfavorable contacts reduces noise in the
compilation of the conditional probabilities.

Current knowledge-based discriminatory functions do not
perform adequately in selecting the most near-native confor-
mations from an ensemble of decoys. Thus improvement in
accuracy or effectiveness of discriminatory functions, even on
a small scale, may contribute to improved structure prediction.
The newly parameterized RAPDF on a high-resolution dataset
is more effective at selecting near-native structures.

Acknowledgments

This work was supported in part by Searle Scholar Award, NSF grant DBI-
0217241, NSF CAREER award and NIH grant GM068152. We thank Michal
Guerquin and other members of the Samudrala group for helpful comments.

References
Ben-Naim,A. (1997) J. Chem. Phys., 107, 3698–3706.
Bott,R., and Frane,J. (1990) Protein Eng., 3, 649–657.
Chalaoux,F.R., O’Donoghue,S.I. and Nilges,M. (1999) Proteins, 34, 453–463.
Chandonia,J.M., Hon,G., Walker,N.S., Conte,L., Koehl,P., Levitt,M. and

Brenner,S.E. (2004) Nucleic Acids Res., 32, 189–192.
Colovos,C., and Yeates,T.O. (1993) Protein Sci., 2, 1511–1519.
Cruickshank,D.W. (1999) Acta Crystallogr., D55, 583–601.
EU3-D Validation Network (1998), J. Mol. Biol., 276, 417–436.
Furuichi,E., and Koehl,P. (1998) Proteins, 31, 139–149.
Godzik,A., Kolinski,A. and Skolnick,J. (1995) Protein Sci., 4, 2107–2117.
Godzk,A. (1996) Structure, 4, 363–366.
Jernigan,R.L., and Bahar,I. (1996) Curr. Opin. Struct. Biol., 6, 195–209.
Kraulis,P. (1991) J. Appl. Crystallogr., 24, 946–950.
Laskowski,R.A., MacArthur,M.W. and Thornton,J.M. (1998) Curr. Opin.

Struct. Biol., 8, 631–639.
Lazaridis,T., and Karplus,M. (2000) Curr. Opin. Struct. Biol., 10, 139–145.
Merritt,E., and Bacon,D.J. (1997) Methods Enzymol., 277, 505–524.
Moult,J. (1997) Curr. Opin. Struct. Biol., 7, 194–199.
Murzin,A.G., Brenner,S.E., Hubbard,T. and Chothia,C. (1995) J. Mol. Biol.,

247, 536–540.
Park,B.H., Huang,E.S. and Levitt,M. (1997) J. Mol. Biol., 266, 831–846.
Samudrala,R., and Levitt,M. (2000) Protein Sci., 9, 1399–1401.
Samudrala,R., and Moult,J. (1998) J. Mol. Biol., 275, 895–916.
Samudrala,R., Xia,Y., Levitt,M. and Huang,E.S. (1999) In Altman,R.,

Dunker,K., Hunter,L., Klein,T. and Lauderdale,K. (eds), Proceedings of
the Pacific Symposium on Biocomputing. pp. 505–516.

Samudrala,R., Xia,Y., Levitt,M. and Huang,E.S. (1999) Proteins, S3, 194–198.
Sippl,M.J. (1990) J. Mol. Biol., 213, 859–883.
Sippl,M.J. (1993) Proteins, 17, 355–362.
Sippl,M.J. (1995) Curr. Opin. Struct. Biol., 5, 229–235.
Thomas,P.D., and Dill,K.A. (1996) J. Mol. Biol., 257, 457–469.
Tsai,J., Bonneau,R., Morozov,A.V., Kuhlman,B., Rohl,C.A. and Baker,D.

(2003) Proteins, 53, 76–87.
Wang,K., Fain,B., Levitt,M. and Samudrala,R. (2004) BMC Struct. Biol., 4,

8–25.
Zhang,C., Liu,S., Zhou,H. and Zhou,Y. (2004) Biophys. J., 86, 3349–3358.

Received February 2, 2006; revised April 21, 2006;
accepted April 30, 2006

Edited by P. Balaram

437437

Performance of knowledge-based discriminatory functions for protein structure selection


