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Abstract

PsiCSI is a highly accurate and automated method of assigning secondary structure from NMR data, which
is a useful intermediate step in the determination of tertiary structures. The method combines information
from chemical shifts and protein sequence using three layers of neural networks. Training and testing was
performed on a suite of 92 proteins (9437 residues) with known secondary and tertiary structure. Using a
stringent cross-validation procedure in which the target and homologous proteins were removed from the
databases used for training the neural networks, an average 89% Q3 accuracy (per residue) was observed.
This is an increase of 6.2% and 5.5% (representing 36% and 33% fewer errors) over methods that use
chemical shifts (CSI) or sequence information (Psipred) alone. In addition, PsiCSI improves upon the
translation of chemical shift information to secondary structure (Q3 � 87.4%) and is able to use sequence
information as an effective substitute for sparse NMR data (Q3 � 86.9% without 13C shifts and
Q3 � 86.8% with only H� shifts available). Finally, errors made by PsiCSI almost exclusively involve the
interchange of helix or strand with coil and not helix with strand (<2.5 occurrences per 10000 residues). The
automation, increased accuracy, absence of gross errors, and robustness with regards to sparse data make
PsiCSI ideal for high-throughput applications, and should improve the effectiveness of hybrid NMR/de novo
structure determination methods. A Web server is available for users to submit data and have the assignment
returned.
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The flood of data from the genomic sequencing projects has
inspired structural genomic projects aimed at determining
all of the possible protein folds (Burley 2000; Brenner
2001). Although the major methodology being used in these
projects is X-ray crystallography, NMR is also being devel-
oped as an alternative for high-throughput applications
(Montelione 2001). One of the major bottlenecks in NMR
structure determinations is in the interpretation and analysis
of the spectral data, which, with the possible exception of
chemical-shift assignment (Bailey-Kellogg et al. 2000;

Moseley et al. 2001), still requires considerable human in-
tervention. One promising approach to this problem is to
couple theoretical simulations with NMR methods to reduce
the amount of data, effort, and time required to determine
the fold of a protein (Delaglio et al. 2000; Rohl and Baker
2002). Automated and accurate secondary structure assign-
ments are necessary for these methods to be effective.

Secondary structure from chemical shifts (CSI)

The first step of any NMR structure determination is the
assignment of chemical shifts (CSI). Because this is also the
only step that has been partially automated, a considerable
amount of effort has been expended in translating chemical
shifts into structural information (Wishart et al. 1992; Wis-
hart and Sykes 1994; Cornilescu et al. 1999; Bonvin et al.
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2001). There is a fairly simple, if noisy, relationship be-
tween secondary structure and the chemical shifts of certain
nuclei (Spera and Bax 1991; Wishart et al. 1991). For ex-
ample, H� chemical shifts are higher than average (down-
field) in extended structures and lower than average (up-
field) in helices. The same is true for 15N and C� shifts,
whereas the opposite relationship holds for C, and C� shifts.
To exploit this information, CSI (Chemical Shift Index)
(Wishart et al. 1992; Wishart and Sykes 1994) assigned
three indices, −1, 0, and 1, depending on whether the chemi-
cal shift was near the average value or at one of the ex-
tremes. Consecutive occurrences of like indices were used
to identify the presence of secondary structure. To further
increase accuracy, a jury system averaged assignments from
multiple chemical shifts—C, C�, C�, and H�—to arrive at a
consensus assignment.

Secondary structure from sequence (Psipred)

Early secondary structure prediction methods relied upon
database (Chou and Fasman 1974; Garnier et al. 1978) or
theoretically derived propensities (Lim 1974) for residue
types to be in the three secondary structure states with Q3
(i.e., the percentage total number of residues correctly as-
signed to the three secondary structure states ) accuracies in
the 60% range. The current generation of methods exploits
the information from multiple alignments to further enhance
the accuracy (Krogh et al. 1994; Rost 1996; Jones 1999),
which now approaches 80%. The use of neural nets, PHD
(Rost 1996) and Psipred (Jones 1999), to interpret the large
amount of data has been also instrumental in increasing the
accuracy. One of the most accurate methods, Psipred, uses
neural nets to convert PsiBlast (Altschul et al. 1997) profile
data to secondary structure propensities. A second set of
neural nets then takes into account local interactions to
smooth the resulting secondary structure predictions and
further increase accuracy.

Secondary structure from chemical shifts and
sequence (PsiCSI)

PsiCSI combines both the chemical shift-based and se-
quence-based methods to further increase the accuracy of
secondary structure assignments. It is also designed to best
utilize whatever data is available. PsiCSI begins by refining
the CSI methodology. Rather than three indices, three sepa-
rate potentials ranging from 0 to 1 are assigned to reflect the
relative likelihood of a given chemical-shift value being
associated with a given secondary structure state. Like CSI,
PsiCSI reduces noise by polling nearby shifts. PsiCSI ex-
amines a small window of shifts (three residues) centered
around the residue in question. Potentials derived from
these shifts, along with the estimated residue-dependent re-
liabilities (i.e., probability of the assignment being correct)
of these potentials, are fed into a first layer of neural net-

works to derive a second set of refined potentials. Like CSI,
multiple shifts are used to further increase accuracy. Addi-
tional information from 15N shifts and from Psipred predic-
tions is also used. Rather than utilizing a simple jury system,
PsiCSI trains a second layer of neural networks. Every pos-
sible combination of the available data for the residue (i.e.,
refined potentials from the first layer of networks and
Psipred potentials) is fed into separate neural nets. Reliabili-
ties for each combination are estimated and the best per-
forming combination (for that residue type) is used to pro-
vide potentials for the next layer of neural networks. Fi-
nally, as with Psipred, the last neural net takes into account
local interactions. This is similar to the first layer of neural
nets used to average out chemical shift noise. However,
because the accuracy of the inputs at this stage is much
higher, it is possible to utilize a much larger window (17 vs.
3 residues) to take into account more subtle interactions
between distant residues. The most reliable outputs from the
second layer along with estimated reliablities are fed into this
final neural net to ultimately obtain the PsiCSI prediction.

Results and Discussion

PsiCSI significantly improves upon existing methods

PsiCSI achieves a Q3 accuracy of 89% (per residue), which
is a significant improvement over the 82.8% (z > 12) accu-
racy observed for CSI and the 83.5% (z > 11) accuracy
observed for Psipred. The CSI accuracy observed for our
dataset differs from the originally published accuracy of
92%. However, this figure was obtained using a small
sample of proteins on the basis of a combination of subjec-
tive identification of secondary structures from NMR data
(not structures) and on crystal structures. In addition, the
dataset was not jackknifed, 8 of the 16 proteins used to
evaluate CSI were also part of the set of 12 proteins used to
determine the indices. The observed accuracy of Psipred
also differs from the stated accuracy (80%) by more than
can be accounted for by random chance (z > 8). The test set
may include proteins and/or homologs to proteins used to
train Psipred’s neural networks, which could account for the
higher accuracy. However, the accuracy of the chemical
shift alone version of PsiCSI (87.4%) indicates that the high
accuracy of PsiCSI is not contingent upon the unusual ac-
curacy of Psipred on the test set.

The distribution of Q3 accuracies of PsiCSI, CSI, and
PsiPred, is shown in Figure 1. The distribution of PsiCSI
accuracies is very tight, reflecting the consistency of the
method. Some of the less accurate results come from large
regions of coil being assigned as helix or extended (see
Electronic Supplemental Material). It is possible that PsiCSI
is detecting some residual structure in these regions. PsiCSI
does better than CSI or Psipred in the majority of cases as
is expected from the average per residue increase in accu-
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racy. The existence of cases in which PsiCSI performs 40%
better than CSI and 28% better than Psipred indicates that
PsiCSI is able to compensate when the other methods do
extremely poorly.

Table 1 lists different indices of accuracy. Although
PsiCSI is most accurate for helical regions and less accurate

for extended and coil regions, this is true for all methods,
and PsiCSI is still the most accurate method in each cat-
egory. For all three categories, the reliablities and accura-
cies for PsiCSI are virtually identical, indicating that PsiCSI
strikes a good balance between underpredicting and over-
predicting secondary structure elements.

Table 2 lists the frequencies of the different types of
errors made by the different methods. Noteworthy is the
near complete absence of helix to extended or extended to
helix errors in assignments made by PsiCSI. In contrast,
Psipred is 75 times more likely to make these sorts of errors
and will occasionally interchange stretches of helix and
strand. The major source of error for PsiCSI is the inter-
change of extended and coil states. This is understandable
given that PsiCSI only takes into account local interactions,
whereas extended regions are partially defined by hydro-
gen-bonding interactions that are not necessarily local.

Multiple levels of neural nets progressively increase
the accuracy of PsiCSI

The relationship between chemical shift and secondary
structure is a very noisy one. Initial secondary structure
potentials are rather poor predictors (Table 3). After appli-
cation of the first set of neural nets, which reduces the noise

Table 1. Accuracy and reliability of PsiCSI, Psipred, and CSI

Overall
(Q3)%

Accuracy (%)a Reliability (%)b

H E C H E C

PsiCSI 89.0 91.8 84.4 89.1 93.3 84.0 88.3
PsiCSI (shifts only) 87.4 90.5 80.2 88.3 92.1 82.9 86.2
PsiCSI (no 13C) 86.9 87.0 82.6 88.7 90.6 86.0 85.1
PsiCSI (no 13C/15N) 86.8 87.0 81.6 88.7 90.6 85.9 84.4
Psipred v2.3 83.5 88.7 79.3 81.8 83.1 77.2 86.6
CSI (consensus) 82.8 86.9 80.7 81.0 91.4 71.3 82.7

a Percentage of correct assignments of state/total number of residues that
are actually in that state.
b Percentage of correct assignments of state/total number of residues as-
signed to that state.

Table 2. Nature of assignment errors made by PsiCSI, Psipred,
and CSI

Number of Occurrences per 10000 residues

H → E H → C E → H E → C C → H C → E

PsiCSI 2.1 258.8 0.0 309.7 211.1 317.1
PsiCSI

(shifts only) 2.1 299.1 6.4 387.1 240.7 325.6
PsiCSI

(no 13C) 2.1 411.5 5.3 340.5 283.2 264.1
PsiCSI

(no 13C/15N) 3.2 405.2 5.3 359.6 282.1 263.0
Psipred v2.3 84.9 274.7 73.2 337.3 498.5 379.7
CSI (consensus) 8.9 413.7 3.3 389.2 258.0 647.2

Fig. 1. Distribution of Q3 accuracies. (A) The distribution of Q3 accura-
cies for the PsiCSI, CSI, and Psipred is shown. For CSI, consensus pre-
dictions were not available for two cases, and these were omitted. Not only
is the increased accuracy readily apparent, but the consistency of PsiCSI is
revealed by the a tight and nearly symmetrical distribution of accuracies.
Both CSI and Psipred have significant populations in which the methods do
relatively poorly in contrast to PsiCSI, in which no protein fares worse than
74%, and the average Q3 accuracy is 89%. (B) The distribution of the
differences in the Q3 accuracy of PsiCSI is compared with that of CSI and
Psipred for the same protein. As would be expected from the overall
increased accuracy of PsiCSI, the distribution indicates that there are rela-
tively few cases in which PsiCSI performs more poorly than CSI or
Psipred, and only marginally so. Conversely, the improvement observed
when using PsiCSI can be very large, indicating that the method can still
be effective in cases in which CSI or Psipred do very poorly.

Hung and Samudrala

290 Protein Science, vol. 12



by examining the shifts in a window of three consecutive
residues, the correlation between secondary structure and
chemical shift improves dramatically for all of the shifts.
The effect of the second set of neural nets, which combine
chemical shift data from different nuclei and Psipred data, is
also shown in Table 3. Progressive addition of more input
points improves accuracy. Although there are clearly dimin-
ishing returns with data combinations containing more than
four sets of potentials, the identity of the inputs matters less
as the number of inputs increases. The final neural net ac-
counting for local interactions raises the accuracy to its final
value of 89% when all available data is used. The system
also is effective when only subsets of data are used as inputs
with 87.4% accuracy when data is restricted to chemical
shifts, 86.9% accuracy with only 15N, H�, and Psipred data,
and 86.8% with just H� and Psipred data.

The use of well-defined consensus secondary structures
minimizes the variability introduced by
NMR conformers

NMR structures consist of sets of conformers that satisfy the
constraints derived from the spectral data (largely from
NOEs). Because secondary structure is usually not explic-
itly constrained, there are variations in secondary structure
between the different conformers. Previous studies correlat-
ing chemical shift with structure have largely avoided using
NMR-derived structures to sidestep this problem. However,
this limits the number of proteins that can be assayed to
those with both NMR data and crystal structures. Further-
more, the use of crystal structures may mask true differ-
ences between solution and the crystal states. It was for this
reason that solution structures were used whenever possible
(85/92 structures).

Simple use of just the first conformer was attempted with
some success (Q3 � 86.1% for 68 proteins; data not
shown). However, the level of variation between conform-

ers was sufficiently high (94% average pairwise concor-
dance; 87% concordance between the most divergent pair)
that significant errors in secondary structure identification
were introduced. The variability was reduced by using a
consensus secondary structure (96% concordance). A fur-
ther difficulty arises that variability can be much higher in
regions in which there are fewer experimental NMR con-
straints. The lack of constraints can be the result of true
structural heterogeneity or the result of experimental factors
(relaxation, exchange, chemical shift ambiguity), which
preclude the observation and identification of NOEs. Thus,
the training set was further restricted to residues in which
the level of agreement on secondary structure was at least
90%, which accounted for a large majority (85%) of the
residues.

The accuracies of the different methods over this subset
of residues and over the entire set of residues are shown in
Table 4. Table 5 lists all of the proteins in the test set and the
Q3 accuracies using PsiCSI, CSI, and Psipred. All methods
improve by ∼ 3% when the subset of well-defined regions is
used. Large-scale analysis of secondary structure by EVA
(Eyrich et al. 2001; Rost and Eyrich 2001) has also detected
a 3% lower accuracy for prediction methods when the first
conformer of an NMR structure is used rather than a crystal
structure. One possible reason for this decrease is that dis-
ordered regions are generally not observed in crystal struc-
tures, whereas they are present in NMR structures. Our
protocol seems to have restored this 3% difference in pre-
diction accuracy by filtering out these regions and also by
eliminating the noise introduced by utilizing first conformer
structures rather than the consensus of all conformer struc-
tures. This type of strategy may be useful for other surveys
of secondary structures that include NMR structures. All
statistics have been calculated using this subset of residues
(9437 residues) with well-defined secondary structure un-
less otherwise stated.

The accuracy of PsiCSI may be improved by
additional data points and sources

Because secondary structures are somewhat artificial con-
structs, there is ambiguity in how they are defined. DSSP

Table 3. Accuracy of PsiCSI after each layer of
neural networks

Q3 Accuracy Range %

Initial potentials 51.7–69.6a

After first layer 63.4–79.0a

After second layer
2 inputs 73.5–86.0b

3 inputs 78.6–87.9b

4 inputs 82.9–88.4b

5–6 inputs 84.7–88.5b

After third layer 89.0

a Accuracy depends on the nucleus that gave rise to the chemical shifts
used for the initial potentials.
b Accuracy depends upon which inputs (chemical shifts and/or Psipred
derived data) are combined.

Table 4. Accuracy of PsiCSI, CSI, and Psipred on the regions
with well-defined secondary structure

All regions (Q3%)
Well-defined

regions (Q3%)

PsiCSI 85.9 89.0
PsiCSI (shifts only) 84.5 87.4
Psipred v2.3 80.3 83.5
CSI (consensus)a 80.1 82.8

a Only proteins in which a consensus could be reached (90/92) by CSI were
considered.
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(Kabsch and Sander 1983, used in this study) and Stride
(Frishman and Argos 1995), the two most popular identifi-
cation protocols agree to a level of 95% of the three-state
secondary structure assignments, mostly differing on the
extent of secondary structures (Cuff and Barton 1999).
DEFINE (Richards and Kundrot 1988), used with DSSP in
the original CSI evaluation, agrees with DSSP and Stride at
the level of 73% and 74%, respectively (Cuff and Barton
1999). An additional factor affecting the limit of accuracy
are the limits of resolution of the models upon which the
secondary structures are based. The dataset used in this
study consisted of residues in which there is at least 90%
agreement on the secondary structure between the different
conformers, and presently, PsiCSI, at 89%, is close to this
minimum accuracy. However, as the average pairwise con-
cordance between the secondary structure of conformers is
94%, there is still room for improvement.

To further improve PsiCSI, more data points and more
data sources will be required.

The present sample size (9437 residues) still places limits
on the data processing scheme. For example, given a suffi-

Table 5. Q3 accuracies for members of the test set

Protein PsiCSI CSI Psipred

1d6k A 74.12 68.24 74.12
1ckv _ 74.19 59.48 65.32
1dbd A 77.00 76.00 75.00
1g4f A 78.38 79.73 51.35
1cex _ 79.70 76.41 79.19
1ckr A 79.73 77.03 72.30
1mb1 _ 81.63 83.16 83.67
2rsp A 81.74 78.90 77.39
1g5v A 81.82 81.82 83.64
2jhb A 82.31 80.77 64.62
1hka _ 83.54 81.20 81.65
1c54 A 83.87 75.27 73.12
1d4b A 84.21 84.62 64.04
1blr _ 84.25 75.41 83.46
1omt _ 84.31 80.00 84.31
1b64 _ 84.38 88.89 71.88
1qlz A 84.44 89.77 72.22
1cej A 84.52 83.33 78.57
1d2b A 84.76 79.21 75.24
1duj A 85.03 77.22 79.68
1bb8 _ 85.07 89.55 65.67
1cz5 A 85.47 65.54 87.71
1bqv _ 85.57 78.95 76.29
1qm3 A 85.71 89.16 65.48
1osp O 86.06 85.54 76.89
1bwm A 86.12 66.27 83.25
1onc _ 86.41 67.65 77.67
1myo _ 86.41 79.21 84.47
1bf8 _ 86.67 81.82 85.45
1ci5 A 86.90 81.93 80.95
1fzt A 87.10 77.71 87.10
2ife A 87.67 47.89 79.45
1ssn _ 87.85 82.24 75.70
1qm1 A 88.17 89.01 63.44
1qhk A 88.37 85.37 79.07
7i1b _ 88.41 84.78 86.23
1qkh A 88.89 78.33 79.37
1bnp _ 89.04 84.51 86.30
1bld _ 89.05 78.68 88.32
1dlx A 89.22 87.25 92.16
1u9a A 89.31 77.56 91.19
1ns1 A 89.86 97.10 68.12
1e17 A 89.87 70.89 86.08
1rch _ 89.92 _ 93.28
1akp _ 90.00 73.75 88.75
2ncm _ 90.32 90.32 88.17
1tba A 90.38 79.59 80.77
1h92 A 90.38 72.00 90.38
1fo7 A 90.53 91.58 70.53
1c15 A 90.91 89.29 82.95
2tbd _ 90.91 84.26 77.27
1eoq A 90.91 82.89 89.61
1imp _ 91.36 91.36 87.65
1aq5 A 91.49 87.23 89.36
1oca _ 91.56 82.12 90.26
1d7q A 91.60 86.73 93.13
1inz A 91.67 93.55 76.52
1br0 A 91.92 93.94 94.95
1qjt A 92.05 89.77 88.64

(continued)

Table 5. Continued

Protein PsiCSI CSI Psired

1bo0 _ 92.11 82.99 92.11
1hdn _ 92.21 _ 85.71
1itf _ 92.57 86.49 87.84
3pdz A 92.55 76.92 93.62
1khm A 92.68 88.75 89.02
1g03 A 92.86 95.54 87.50
3msp A 92.92 81.42 86.73
1d1d A 93.30 94.26 85.65
1eo0 A 93.42 64.47 85.53
1ab2 _ 93.62 90.00 92.55
3mef A 93.62 78.72 91.49
1jwd A 93.75 70.00 88.75
2bjx A 93.94 88.89 94.95
1c06 A 94.03 94.03 90.30
1mfn _ 94.16 81.05 94.16
1b91 A 94.17 91.58 90.29
1eiw A 94.19 92.86 88.37
1ig6 A 94.25 88.51 91.95
1jwe A 94.74 92.47 92.63
1iti _ 94.92 88.14 81.36
1bw5 _ 95.16 86.89 77.42
1cfe _ 95.24 82.86 95.24
1hkt _ 95.77 80.60 88.73
1kqq A 96.06 91.27 92.91
1du6 A 96.49 98.25 94.74
2cpb _ 96.77 96.77 87.10
1emw A 97.22 86.11 93.06
1eih A 98.44 89.06 95.31
1c0v A 98.53 100.00 97.06
1qk9 A 98.73 92.41 89.87
1ntc A 98.78 95.65 89.02
1fr0 A 99.07 90.48 88.79
1rpr A 100.00 88.89 98.28
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cient number of data points, it might be possible to improve
upon the second layer of neural nets by training a separate
set of nets for each residue type. More sample points would
also reduce the noise in the original translation of chemical
shifts to secondary structure. A larger training set would
especially benefit the final neural network, which has many
more connections than the other networks and, thus, is more
difficult to train. As for data sources, additional NMR in-
formation could include more chemical shifts (e.g., from
amides), J-coupling constants, and NOE data. These data
could easily be incorporated as additional inputs to the neu-
ral nets. Because the major weakness of PsiCSI is in dis-
tinguishing coil from extended, NOE information, which
could be used to infer the existence of non-local hydrogen
bonding, is likely to be of greatest benefit. Finally, PsiCSI,
has scrupulously avoided a major source of secondary struc-
ture information, homology. The secondary structure of
close homologs is highly conserved and predictions based
on close homology are much more accurate than any se-
quence-based method. Even in its present form, PsiCSI
should perform better on proteins with homology to mem-
bers of the training set. During prototyping, it was observed
that overall accuracies, especially that of the first chemical
shift to secondary structure potential translation and that of
the final neural net layer, were significantly increased by the
inclusion of homologs in the training set. PsiCSI could be
easily modified to explicitly include homology information
either directly as additional inputs, or indirectly through
modifications of the secondary structure potential transla-
tions to weight data according to the degree of local se-
quence homology.

PsiCSI should expedite both experimental and
theoretical applications

Presently, NMR secondary structure assignments require
manual interpretation of several pieces of data, mainly
chemical shifts, J-couplings, and NOEs. PsiCSI approaches
the accuracy required to completely automate the process
and certainly reduces the amount of additional data that
needs to be gathered and interpreted before an assignment is
made. The effectiveness of the method with sparse data also
means that secondary structures can be confidently assigned
at an earlier stage. The fact that PsiCSI does not require
heteronuclear chemical shifts to be effective also makes it
useful for proteins in which costs and/or poor expression
preclude isotopic labeling. The very high accuracy and au-
tomated nature of PsiCSI also makes it potentially quite
useful for rapid profiling of proteins in high-throughput
structural genomic applications. The ability of PsiCSI to
function without complete assignment of all of the back-
bone chemical shifts makes it particularly well suited for
use in conjunction with automated chemical-shift assign-

ment methods, which do not always provide complete as-
signments.

PsiCSI is one of a new generation of applications such as
TALOS (Cornilescu et al. 1999), and Rosetta-NMR (Rohl
and Baker 2002) that utilize the growing database of struc-
tural and sequence information to better interpret experi-
mental data. Rosetta-NMR is an example of more ambitious
attempts to marry de novo database-based protein structure
simulations with NMR data to directly arrive at a tertiary
fold. To reduce the search space, de novo programs often fix
or bias secondary structures during the simulation (Ortiz et
al. 1999; Samudrala et al. 1999; Bonneau et al. 2001). Small
errors can impact upon the convergence of the final struc-
tures. However, gross errors, such as those in which large
stretches of helix or strand are interchanged, can result in
prediction of the wrong fold (Samudrala and Levitt 2002).
PsiCSI should be of considerable help for these hybrid ap-
plications, not only because of the increase in overall accu-
racy, but also because of the virtual elimination of gross
errors.

Materials and methods

Initial chemical shift secondary structure potentials are
derived from a database

Because of the differences in referencing and calibrating chemical
shifts, especially for earlier studies, chemical shifts were obtained
from a database (RefDb) (http://redpoll.pharmacy.ualberta.ca/
RefDB/) provided by David Wishart’s group, in which they have
re-referenced the data points from the BBMR database (Seavey et
al. 1991). Paramagnetic systems, unfolded proteins, proteins
smaller than 35 residues, and proteins with large prosthetic groups
or other ligands were excluded, giving a set of 92 proteins for
which there were at least some 13C, 15N, and 1H shifts and a
matching structure in the PDB. Where multiple structures were
available, preference was given to the solution structure.

For each of the proteins in the final set of 92, the secondary
structure was first determined using DSSP (treating H and G as
helix, E and B as extended, and everything else as coil). For NMR
ensembles, the secondary structure of all of the conformers were
determined and a consensus structure obtained. Residues in which
there was < 90% agreement between the conformers were ex-
cluded from further consideration. A database was made from the
remaining residues, relating chemical shift to secondary structure
and amino acid type. To translate a given chemical shift into
secondary structure potentials, the database was searched for resi-
dues with chemical shifts (of the same residue type) that were
within 0.4 ppm for C, 0.2 ppm for C�, and C�, 0.3 ppm for N, and
0.04 ppm for H�. If there were < 20 shifts, the next closest shifts
were used until the minimum of 20 was obtained. Chemical shifts
from the same protein or related proteins (see below) were ex-
cluded. The secondary structure of each residue within this set was
tabulated. When there was partial disagreement among conformers
as to the state of the residue, the proportion of conformers in each
of the 3 states was used in the tabulation (e.g., for a residue in
which 9 of 10 conformers are helical and 1 is coil, 0.9 would be
added to the helix total, 0.1 would be added to the coil total). The
final number of residues in helix, extended, and coil states were
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divided by the total number of chosen residues to obtain the sec-
ondary structure potentials. These potentials were then normalized
to take into account the proportion of helix, extended, and coil
states in the test set.

Psipred secondary structure potentials were obtained using
Psipredv2.3. Two sets of secondary structure potentials can be
obtained from Psipred. One set uses only the PsiBlast profiles,
whereas the second set smooths the potentials by taking into ac-
count local interactions between residues. The first set of potentials
was used, as the last neural net in PsiCSI also takes into account
local interactions. However, the slightly more accurate smoothed
set of potentials was used for all comparisons of accuracy.

Finally, for each potential, the number of correct assignments
made using that potential were divided by the total number of
assignments made. This was done for each of the three secondary
structure states to give a set of three reliability estimates. Because
of the strong dependence of these reliabilities on the residue type,
the indices were calculated for each of the 20 amino acids to give
20 separate sets of reliability indices per potential.

First layer of neural nets reduce noise by considering
shifts at neighboring residues

Because secondary structures involve more than a single residue,
the accuracy of the initial set of potentials can be increased by
examining the adjacent residues to see whether similar potentials
are found. Thus, the potentials from the original residue, and the
two adjacent residues, along with the estimates of reliability, pro-
vided inputs for the first layer of neural networks. A total of 7
inputs per residue (3 secondary structure potentials, 3 reliability
indices, and 1 input to indicate the absence of data due to the
window extending beyond the edge of the protein) or 21 total, led
into 3 hidden inputs that fed into the final 3 output units. These
outputs correspond to three new secondary potentials. The test set
was balanced so that equal numbers of residues in the three states
were present and then randomly split into two. One set was used
to train the set and the other to evaluate the accuracy. Training was
accomplished by resilient back-propagation until the evaluation set
showed no improvement. This was done three times using a dif-
ferent set of initial values for the weights and the best performing
net chosen. Different neural nets were trained for each of the five
different chemical shifts. The SNNS (Stuttgart Neural Network
System version 4.2) package (http://www-ra.informatik.uni-
tuebingen.de/SNNS/) was used to generate and train all of the
networks. Reliabilities for the new set of potentials were also
estimated.

Second layer of neural nets combine different
chemical shift and Psipred potentials

To combine the chemical-shift and Psipred potentials, a second set
of neural networks was used. Separate networks were trained for
all possible combinations of chemical shift and Psipred data. Each
neural network consisted of an input for each of the chemical shift
derived secondary potentials (3–15), the reliability indices, and an
input for each of the PsiPred potentials and reliability indices.
These fed into a hidden layer of six units and a final output layer
of three units again, corresponding to further refined helical, ex-
tended, and coil potentials. The second layer of neural nets were
trained on balanced sets in the same manner as for the first layer.

Third neural net factors in local interactions

By use of the second layer of neural nets, secondary structure
predictions were made with potentials obtained from each of the

possible data combinations. These were compared with the actual
secondary structure and ranked by their reliablity for each residue
type. Outputs from the most reliable combinations were used to
provide inputs for the final neural net. The purpose of this neural
net was to account for local interactions between secondary struc-
ture elements. The architecture was similar to that used in the first
layer of networks with seven inputs per residue corresponding to
the secondary structure potentials and the reliability indices. How-
ever, due to the increased accuracy of the inputs at this point, a
larger window of 17 residues could be used. The resulting 119
inputs fed into a hidden layer of 17 and an output layer of 3,
corresponding to the 3 final secondary structure potentials. Train-
ing was done as before, except that sets were not balanced. Be-
cause the best available data nearly always includes a Psipred
component, the final network optimizes itself to correct Psipred
types of errors and underperforms when only chemical-shift infor-
mation is available. Thus, estimates of accuracy when only chemi-
cal-shift information is available were obtained using a separate
network that was trained on chemical shift data (resulting in a
minor improvement of 0.5%).

Test sets and cross-validation

For stringent cross-validation, all of the calculations, including the
chemical-shift translation, the calculation of reliability indices, the
ranking of the performance of the different nets, and neural net
training itself, were done by use of a subset that not only excluded
the protein to be tested, but also any proteins in the same family
[up to the T level as determined by CATH (Orengo et al. 1997)].
By use of software made publicly available by the researchers, CSI
and Psipred were also used on the same dataset to predict second-
ary structure for comparison.

Electronic supplemental material

Figure S1 shows the relative performance of the three methods:
PsiCSI, CSI, and PsiPred. The assignments for all the proteins used
in the test set are listed.

Web server

A server that takes as input a sequence and chemical shift data and
returns a secondary structure prediction is accessible via http://
protinfo.compbio.washington.edu.
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