
Taken from Danesh A, Gautam D, eds. Special Edition Using Linux

System Administration, Que Publishing, 2000.

(A) Chapter 10 - Ram Samudrala

(B) Installing and using RAID

(C) Understanding RAID

(D) Background

RAID is an acronym for Redundant Array of Inexpensive (or

Independent) Disks. The term was first coined by Patterson, Gibson,

and Katz to describe how a number of inexpensive/independent disks

could be combined (see Figure 10.1) into what appears as a single

storage unit to the computer with performance similar to large disks

(Patterson DA, Gibson G, and Katz RH. ‘‘A Case for Redundant Arrays

of Inexpensive Disks (RAID)’’ Technical Report UCB/CSD 87/391,

University of California, Berkeley, CA 1987).

disk 1

disk 2

disk 3

single
logical
storage

unit

Figure 101: Illustration of a RAID system where a number of independent disks are
combined to form a single logical storage unit (RAID).

(D) Why you should use RAID

There are several reasons to use RAID, the primary ones being

increased storage capacity, fault tolerance during disk failure due

to its redundancy, and speed. The economic costs of a disk failure

can be extremely high (not just because of down time, but also

because of lost productivity and recovery costs). RAID systems

generally enable one to recover from single disk failures quickly and

transparently, without any down time. Thus RAID is a good option for

those who want an additional support layer to shore up a traditional

backup system and do not want to always bother with restoring backups

every time a disk fails

(D) Striping

Fundamental to understanding how RAID works is the concept of ‘‘data

striping’’. Data striping involves splitting up the storage space of

each drive into small chunks of data (or stripes) which are then

interleaved across the different drives in the array (see Figure

10.2). The combined data is composed of stripes in succession from

each drive. The stripes can be as small as one sector (512 bytes) or

as large as several megabytes, depending on environment the array is

being used in.

1 2 3

4 5 6

7 8 9

stripe 1

stripe 2

stripe 3

Figure 102: Data striping across several disk drives. Blocks of data from each disk
are grouped together sequentially to create stripes of data in the array.

(D) Different RAID architectures

There are six recognised types of RAID architectures, RAID-0 through

RAID-5. Each provides a different type of disk fault-tolerance and

offers different trade-offs in features and performance.

Fault-tolerance is key to a RAID system because the average failure

time of the array is equal to the average time between failures of

each drive divided by the total number of drives. Therefore, it is

essential there be some redundancy in the data storage to make up for

the lower average time between failures for the array as a whole.

The level of fault-tolerance also affects the performance and

features of the array. Each type of RAID is described below, and

Table 10.1 compares the different types of RAID and their features at

a glance.

• RAID-0 arrays are sets of striped disk drives with no redundancy

(thus it doesn’t completely fit the RAID acronym) in the data

storage, and consequently without any fault tolerance. These

arrays are commonly configured with large stripes for

applications requiring intensive I/O, since the splitting of

data across drives results in higher throughput and data storage

efficiency. However, a single drive failure will cause the

entire array to crash. This level is also known as disk

striping, and is the fastest and most efficient array type.

• RAID-1 arrays consists of pairs of disk drives that store

duplicate data. Thus there is complete redundancy: if one

drive fails, the other one of the pair is still available.

Level 1 arrays tend to perform better on reads (since both

drives can perform reads simultaneously) than on writes (since

every write must be done on both drives of the pair). Striping

is not used with a single pair of drives. This level offers

decent performance and fault tolerance, but has the least

storage efficiency of any RAID level. This level is also known

as disk mirroring, and is most useful for performance-critical

fault-tolerant environments.

• RAID-2 arrays are similar to RAID-0 arrays except that error

correcting (ECC) information is stored to achieve disk fault

tolerance. This level is seldom used today since modern disk

drives have ECC information embedded within each sector.

• RAID-3 arrays are similar to RAID-2 arrays except that a single

drive contains the parity information, and the data is striped

at a byte level across several drives. As a consequence, RAID-3

can perform only one I/O operation at a time, limiting its use

to single user systems. However, it is good for data-intensive

single-user environments which access long sequential records.

• RAID-4 arrays are similar to RAID-3 arrays with the exception of

large stripe sizes. The performance of this level is very good

for reading (on the same level as for RAID-0), and not so good

for writes (since the parity information has to be updated each

time). Large sequential writes are fairly fast, but slow random

writes can be very slow. All the parity data is stored on a

single drive and therefore this level is cost efficient.

• RAID-5 arrays circumvent the bottleneck caused in RAID-4 due to

storing parity in one drive by evenly distributing the parity

information among all the drives in the array (see Figure 10.3).

Thus multiple write operations can be processed simultaneously,

resulting in improved performance. The equivalent of one

drive’s storage space is used up to store the array’s parity

data. RAID-5 arrays are extremely flexible because they can be

configured with either large-stripes (for multi-tasking and

multi-user environments) or small-stripes (for maximising

transfer rates). The cost efficiency of this level is the same

as for RAID-4. This level is one of the most commonly used

levels today, and is the best choice in multi-user environments

that are not write-sensitive.

disk 1

disk 2

disk 3

single
logical
storage

unit

Figure 103: Illustration of a RAID-5 array, where the parity information is dis-
tributed across all the drives. Each write requires the parity information to be
updated on all drives, but reads can occur simultaneously on every drive.

Table 10.1 [em] Comparison of features of the different RAID levels

Feature RAID-0 RAID-1 RAID-2 RAID-3 RAID-4 RAID-5

Fault tolerance None Best Good Good Good Good

Storage efficiency Best Worst Good Good Good Good

Read performance Best Good Good Good Good Good

Write performance Best Good OK OK OK OK

For more information on RAID, refer to the What is RAID? FAQ by

Michael Neuffer at

http://www.uni-mainz.de/ neuffer/scsi/what is raid.html and the DPT

Understanding RAID primer at http://www.dpt.com/library/library.html

(D) RAID implementations

RAID can be implemented in the hardware, in the form of specialised

controllers that manage the array, or in software, as part of the

kernel that is layered between the low-level disk driver and the

filesystem above it.

(E) Hardware RAID

Hardware-based RAID can take on two forms: host-based controllers,

where an adapter card plugs into an ISA/EISA/PCI slot in your

computer, or SCSI-to-SCSI controllers where an external ‘‘box’’ that

is connected to the host via a normal SCSI controller and appears to

the host as a single disk.

In the former case, the adapter/controller card manages the RAID

independently from the host. The primary advantage of using a

controller card has to do with its ability to utilise multiple SCSI

channels to read and write from the RAID array, thus increasing the

transfer rate over the SCSI bus. In the latter case, all the RAID

handling is accomplished by a machine containing both a controller

and an external disk subsystem. A single SCSI channel must be used

to control the RAID and this can create a bottleneck. Thus

host-based controllers are the preferred choice for a hardware RAID

system.

(E) Software RAID

RAID can also be implemented purely in software, without any

requirement of extra hardware, by a set of kernel modules and

management utilities. The MD driver under Linux is one example of

such a RAID implementation (which implements levels 0, 1, 4, and 5).

The Linux RAID driver is implemented as a kernel layer between the

block-device interface (upon which the filesystem resides) and the

low-level disk drivers (for IDE and SCSI drivers). For more

information, see the Software-RAID HOWTO at:

http://www.linuxdoc.org/HOWTO/mini/Software-RAID.html

(E) Hardware vs. Software RAID

Software-based arrays run like any other application on the system

and therefore will consume a lot of CPU cycles. They are also

operating system dependent. The performance of a software-based RAID

is greatly affected by the other applications that are running

concurrently on the system. In contrast, hardware-based arrays

generally do not depend on the CPU performance and load of the host

machine.

Hardware-based RAID schemes have little in common with software-based

RAID systems except in terms of the array functionality.

Hardware-based arrays have true multi-tasking, since the processor in

the controller can execute multiple instructions independent of the

operating system type and function. Hardware-based RAID controllers

also have an on-board memory cache that can allow high transfer rates

into the large controller cache. Hardware-based RAID systems are

more reliable since no special software is not required to boot the

system.

Hardware-based RAID arrays are transparent to the operating system,

which makes their management easier. Software RAID implementations

have several configuration options, tending to complicate management.

In contrast, software-based RAID systems are extremely cost efficient

(since cheaper IDE disks can be used without any need for additional

hardware). With software-based systems, different partitions in a

single disk can be grouped together to create redundancy and

fault-tolerance, whereas hardware-based systems group together whole

drives. Also, under Linux, software-based RAID management is

completely possible within the operating system, whereas dedicated

management tools under Linux for hardware implementations may not be

available.

(C) Installing and configuring RAID in Linux

(D) Supported controllers

Currently a well-supported host-based hardware RAID controller (i.e,

a controller for which there exists one or more well-supported

drivers under Linux) is one that is made by DPT (http://www.dpt.com).

However, there exist other host-based and SCSI-to-SCSI controllers

which may work under Linux. These include the ones made by Syred

(http://www.syred.com), ICP-Vortex (http://www.icp-vortex.com), and

BusLogic (http://www.mylex.com). See the RAID solutions for Linux

page http://linas.org/linux/raid.html for more information.

(E) DPT controllers

Essentially all the SmartRAID IV and V controllers are supported.

The installation and configuration section will focus on how to set

up SCSI-based hardware RAID, focusing mainly on host-based adapters

from DPT, though the principles applied here are fairly general.

Specifically, the Smartcache IV PM2144UW and PM3334UW controllers

have been tested, with DPT supplied enclosures, on Linux 2.0.3x and

2.2.x kernels. The SmartRAID V Decade cards require additional

software. For additional detail and the latest information, consult

the DPT Hardware RAID HOWTO at

http://www.ram.org/computing/linux/dpt raid.html.

(E) ICP vortex controllers

ICP vortex has a complete line of disk array controllers which

support Linux. The ICP driver is in the Linux kernel since version

2.0.31. All major Linux Distributors S.u.S.e., LST Power Linux,

Caldera and Red Hat support the ICP controllers as boot/installation

controllers. The RAID system can easily be configured with their

romsetup program (you do not have to boot MS-DOS for configuration).

With their monitoring utility gdtmon it is possible to manage the

complete ICP RAID system during operation (check transfer rates, set

parameters for the controller and hard disks, exchange defective hard

disks,etc.).

(D) What hardware should be used?

(E) Controller type

Given all these options, if you’re looking for a RAID solution, you

need to think carefully about what you want. Depending on what you

want to do, and which RAID level you wish to use, some cards may be

better than others. SCSI-to-SCSI adapters may not be as good as

host- based adapters, for example. See the discussion by Michael

Neuffer (neuffer@kralle.zdv.uni-mainz.de), the author of the EATA-DMA

driver, on his Linux High Performance SCSI and RAID page

http://www.uni-mainz.de/ neuffer/scsi/.

(E) Enclosure type

The enclosure type affects the hot swap-ability of the drive, the

warning systems (i.e., whether there will be indication of failure,

and whether you will know which drive has failed), and what kind of

treatment your drive receives (for example, redundant cooling and

power supplies). We used the DPT supplied enclosures which have

worked extremely well, but they are expensive. We have also used

Wetex enclosures (http://www.wetex.com) and they also work fairly

well, but lacked the hot swap-ability of the DPT enclosures.

(D) Installation

(E) Installing and configuring the hardware

Refer to the instruction manual to install the controller and the

drives. For DPT, since a storage manager for Linux doesn’t exist

yet, you need to create a MS-DOS-formatted disk with the system on it

(usually created using the command format /s at the MS-DOS prompt).

You will also be using the DPT storage manager for MS-DOS, which you

should probably make a copy of for safety.

Once the hardware is in place, boot using the DOS system disk.

Replace the DOS disk with the storage manager. And invoke the

storage manager using the command:

a:\ dptmgr

Wait a minute or so, and you’ll get a nice menu of options.

Configure the set of disks as a hardware RAID (single logical array).

Choose "other" as the operating system.

The MS-DOS storage manager is a lot easier to use with a mouse, and

so you might want to have a mouse driver on the initial system disk

you create.

Technically, it should be possible to run the SCO storage manager

under Linux, but it may be more trouble than its worth. It’s

probably more easier to run the MS-DOS storage manager under Linux.

(E) Configuring the kernel

You will need to configure the kernel with SCSI support and the

appropriate low level driver. See the Kernel HOWTO

http://sunsite.unc.edu/mdw/HOWTO/Kernel-HOWTO.html for information on

how to compile the kernel. Once you choose "yes" for SCSI support,

in the low level drivers section, select the driver of your choice

(EATA DMA or EATA ISA/EISA/PCI for most EATA DMA compliant (DPT)

cards, EATA PIO for the very old PM2001 and PM2012A from DPT). Most

drivers, including the EATA DMA and EATA ISA/EISA/PCI drivers, should

be available in recent kernel versions.

Once you have the kernel compiled, reboot, and if you’ve set up

everything correctly, you should see the driver recognising the RAID

as a single SCSI disk. If you use RAID-5, you will see the size of

this disk to be 2/3 of the actual disk space available.

(E) Bootup messages

The messages you see upon bootup if you’re using the EATA DMA driver

should look something like this:

EATA (Extended Attachment) driver version: 2.59b
developed in co-operation with DPT
(c) 1993-96 Michael Neuffer, mike@i-Connect.Net
Registered HBAs:
HBA no. Boardtype Revis EATA Bus BaseIO IRQ DMA Ch ID Pr QS S/G IS
scsi0 : PM3334UW v07L.0 2.0c PCI 0xef90 10 BMST 3 7 N 64 252 Y
scsi1 : PM2144UW v07L.Y 2.0c PCI 0xef50 9 BMST 1 7 N 64 252 Y
scsi2 : PM2044U v07K.V 2.0c PCI 0xef10 11 BMST 1 7 N 64 252 Y
scsi0 : EATA (Extended Attachment) HBA driver
scsi1 : EATA (Extended Attachment) HBA driver
scsi2 : EATA (Extended Attachment) HBA driver
scsi : 3 hosts.

Vendor: DPT Model: RAID-5 Rev: 07L0
Type: Direct-Access ANSI SCSI revision: 02

Detected scsi disk sda at scsi0, channel 0, id 0, lun 0
scsi0: queue depth for target 0 on channel 0 set to 64

Vendor: DPT Model: ATOS Rev: 07LY
Type: Direct-Access ANSI SCSI revision: 02

Detected scsi disk sdb at scsi1, channel 0, id 8, lun 0
scsi1: queue depth for target 8 on channel 0 set to 64

Vendor: SONY Model: SDT-9000 Rev: 0200
Type: Sequential-Access ANSI SCSI revision: 02

scsi2: queue depth for target 0 on channel 0 set to 64
SCSI device sda: hdwr sector= 512 bytes. Sectors= 105676800 [51600 MB] [51.6 GB]
sda: sda1

SCSI device sdb: hdwr sector= 512 bytes. Sectors= 35561984 [17364 MB] [17.4 GB]
sdb: sdb1

The above display is for a setup with three DPT SCSI controllers,

with two RAID-5 arrays of size 51.6 GB (seven 9 GB disks) and 17.4 GB

(three 9 GB disks).

The messages you see upon bootup if you’re using the EATA

ISA/EISA/PCI driver should look something like this:

EATA0: IRQ 11 mapped to IO-APIC IRQ 16.
EATA/DMA 2.0x: Copyright (C) 1994-1999 Dario Ballabio.
EATA config options -> tc:y, lc:n, mq:16, eh:y, rs:y, et:n.
EATA0: 2.0C, PCI 0xef10, IRQ 16, BMST, SG 122, MB 64.
EATA0: SCSI channel 0 enabled, host target ID 7.
EATA1: IRQ 9 mapped to IO-APIC IRQ 18.
EATA1: 2.0C, PCI 0xef50, IRQ 18, BMST, SG 122, MB 64.
EATA1: wide SCSI support enabled, max_id 16, max_lun 8.
EATA1: SCSI channel 0 enabled, host target ID 7.
scsi0 : EATA/DMA 2.0x rev. 5.10.00
scsi1 : EATA/DMA 2.0x rev. 5.10.00
scsi : 2 hosts.

Vendor: SONY Model: SDT-9000 Rev: 0200
Type: Sequential-Access ANSI SCSI revision: 02

EATA0: scsi0, channel 0, id 0, lun 0, cmds/lun 2.
Vendor: DPT Model: ATOS Rev: 07LY
Type: Direct-Access ANSI SCSI revision: 02

Detected scsi disk sda at scsi1, channel 0, id 8, lun 0
EATA1: scsi1, channel 0, id 8, lun 0, cmds/lun 16, unsorted, tagged.
SCSI device sda: hdwr sector= 512 bytes. Sectors= 35561984 [17364 MB] [17.4 GB]
sda: sda1

The above display is for a setup with two DPT SCSI controllers, with

one RAID-5 array of size 17.4 GB (three 9 GB disks).

(D) Configuring and testing

(E) Setting up the array

You can now start treating the RAID as a regular disk. The first

thing you’ll need to do is partition the disk (using fdisk). You’ll

then need to set up an ext2 filesystem. This can be done by running

the command:

mkfs -t ext2 /dev/sdxN

where /dev/sdxN is the name of the SCSI partition. Once you do this,

you’ll be able to mount the partitions and use them as you would any

other disk (including adding entries in /etc/fstab).

(E) Hot swapping

We first tried to test hot swapping by removing a drive and putting

it back in the DPT-supplied enclosure/tower (which you buy for an

additional cost). Before we could carry this out to completion, one

of the disks failed. Even though one of the disks failed, all the

data on the RAID drive was accessible.

Instead of replacing the drive, we just went through the motions of

hot swapping and put the same drive back in. The drive rebuilt

itself and everything turned out okay. During the time the disk had

failed, and during the rebuilding process, all the data was

accessible. Though it should be noted that if another disk had

failed, we’d have been in serious trouble.

(E) Performance

Here are some timings with a 3344 UW controller using the bonnie

program:

-------Sequential Output-------- ---Sequential Input-- --Random--
-Per Char- --Block--- -Rewrite-- -Per Char- --Block--- --Seeks---

MB K/sec %CPU K/sec %CPU K/sec %CPU K/sec %CPU K/sec %CPU /sec %CPU
1000 1714 17.2 1689 6.0 1200 5.7 5263 40.2 7023 12.1 51.3 2.2

(E) Features in the EATA DMA driver

This section describes some of the commands available under Linux to

check on the RAID configuration. Again, while references to the

eata dma driver is made, this can be used to check up on any driver.

To see the configuration for your driver, type:

cat /proc/scsi/eata_dma/N

where N is the host id for the controller. You should see something

like this:

EATA (Extended Attachment) driver version: 2.59b
queued commands: 17664
processed interrupts: 17664

scsi0 : HBA PM3334UW
Firmware revision: v07L.0
Hardware Configuration:
IRQ: 0, edge triggered
DMA: BUSMASTER
CPU: MC68000 0MHz
Base IO : 0xef90

Host Bus: PCI
SCSI Bus: Speed: 5MB/sec.
SCSI channel expansion Module: not present
SmartRAID hardware: not present.

Type: -
Max array groups: 7
Max drives per RAID 0 array: 7
Max drives per RAID 3/5 array: 7

Cache Module: not present.
Type: -
Bank0: 0MB without ECC
Bank1: 0MB without ECC
Bank2: 0MB without ECC
Bank3: 0MB without ECC

Timer Mod.: not present
NVRAM : not present
SmartROM : enabled
Alarm : off
Host<->Disk command statistics:

Reads: Writes:
1k: 0 0
2k: 0 0
4k: 0 0
8k: 0 0

16k: 0 0
32k: 0 0
64k: 0 0

128k: 0 0
256k: 0 0
512k: 0 0

1024k: 0 0
>1024k: 0 0
Sum : 0 0
Attached devices:
Host: scsi0 Channel: 00 Id: 00 Lun: 00

Vendor: DPT Model: RAID-5 Rev: 07L0
Type: Direct-Access ANSI SCSI revision: 02

To get advanced command statistics, type:

echo "eata_dma latency" > /proc/scsi/eata_dma/N

Then you can do a:

cat /proc/scsi/eata_dma/N

to get more detailed statistics:

EATA (Extended Attachment) driver version: 2.59b
queued commands: 17737
processed interrupts: 17737

scsi0 : HBA PM3334UW
Firmware revision: v07L.0
Hardware Configuration:
IRQ: 0, edge triggered
DMA: BUSMASTER
CPU: MC68000 0MHz
Base IO : 0xef90
Host Bus: PCI
SCSI Bus: Speed: 5MB/sec.
SCSI channel expansion Module: not present
SmartRAID hardware: not present.

Type: -
Max array groups: 7
Max drives per RAID 0 array: 7
Max drives per RAID 3/5 array: 7

Cache Module: not present.
Type: -
Bank0: 0MB without ECC
Bank1: 0MB without ECC
Bank2: 0MB without ECC
Bank3: 0MB without ECC

Timer Mod.: not present
NVRAM : not present
SmartROM : enabled
Alarm : off
Host Latency Command Statistics:
Current timer resolution: 10ms

Reads: Min:(ms) Max:(ms) Ave:(ms)
1k: 36 0 30 9
2k: 0 0 0 0
4k: 3 0 10 6
8k: 0 0 0 0

16k: 0 0 0 0
32k: 0 0 0 0
64k: 0 0 0 0

128k: 0 0 0 0
256k: 0 0 0 0
512k: 0 0 0 0

1024k: 0 0 0 0
>1024k: 0 0 0 0

Writes: Min:(ms) Max:(ms) Ave:(ms)
1k: 24 0 0 0
2k: 0 0 0 0
4k: 0 0 0 0
8k: 0 0 0 0

16k: 0 0 0 0
32k: 0 0 0 0
64k: 0 0 0 0

128k: 0 0 0 0

256k: 0 0 0 0
512k: 0 0 0 0

1024k: 0 0 0 0
>1024k: 0 0 0 0
Attached devices:
Host: scsi0 Channel: 00 Id: 00 Lun: 00

Vendor: DPT Model: RAID-5 Rev: 07L0
Type: Direct-Access ANSI SCSI revision: 02

To turn off advanced command statistics, type:

echo "eata_dma nolatency" > /proc/scsi/eata_dma/N

(C) Troubleshooting

(D) Upon bootup, no SCSI hosts are detected

This could be due to several reasons, but it’s probably because the

appropriate driver is not configured in the kernel. Check and make

sure the appropriate driver (EATA-DMA or EATA ISA/EISA/PCI for most

DPT cards) is configured and installed. Type in the command lsmod to

see that the driver is indeed loaded and check the messages produced

by syslog.

(D) RAID configuration shows up as N different disks

The RAID has not been configured properly. If you’re using a DPT

storage manager, you need to configure the RAID disks as a single

logical array. When you configure the controller with the SM start

it with the parameter /FW0 and/or select Solaris as OS. This will

cause the array setup to be managed internally by the controller.

(D) Machine/controller is shut down in the middle of a format

As stated in the DPT manual, this is clearly a no-no and might

require the disks to be returned to the manufacturer, since the DPT

Storage Manager might not be able format it. However, you might be

able to perform a low level format on it, using a program supplied by

DPT, called clfmt in their utilities page

http://www.dpt.com/techsup/. Read the instructions after unzipping

the clfmt.zip file on how to use it (and use it wisely). Once you do

the low level format, you might be able to treat the disks like new.

Use this program carefully!

(D) SCSI ABORT BUSY errors produced during initial filesystem format

When you do a mke2fs on the SCSI drive, you may see errors of the

form:

scsi: aborting command due to timeout : pid xxx, scsi0, channel 0, id 2, lun 0
write (10) xx xx xx xx xx xx xx xx xx
eata_abort called pid xxx target: 2 lun: 0 reason: 3
Returning: SCSI_ABORT_BUSY

and this might end up causing the machine to freeze. I (and many

others) have been able to fix this problem by simply reading one or

two hundred MB from the RAID array with dd like this:

dd if=/dev/sdX of=/dev/null bs=1024k count=128

During a format, a fast rush of requests for chunks of memory that is

directly accessible is made, and sometimes the memory manager cannot

deliver it on time anymore. The dd is a workaround that will simply

create the requests sequentially instead of one huge heap at once

like the format tends to create it.

(D) If all fails...

Read this chapter and all the referenced URLs again. Check the

cabling and the termination. Try a different machine if you have

access to one. The most common cause of problems with SCSI devices

and drivers is because of faulty or misconfigured hardware. Finally,

you can post to the various newsgroups and ask for help.

